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This talk is based on joint work with Shunya Saito (Nagoya University). The Grothendieck group is the
classical and basic invariant for both a triangulated category and an exact category. For exact categories,
the Grothendieck monoid, a natural monoid version of the Grothendieck group, has been recently studied
by several authors [1, 2, 6].

In the representation theory of algebras, we often consider extension-closed subcategories of a tri-
angulated category which are not exact nor triangulated. An extriangulated category introduced by
Nakaoka–Palu [5] is a convenient framework to consider such subcategories. Extriangulated categories
unify both exact categories and triangulated categories, and have the notion of conflations, which gen-
eralize conflations (short exact sequences) in an exact category and triangles in a triangulated category.
We can naturally define the Grothendieck monoid M(C) of an extriangulated category C using conflations.
In this talk, we give several results about it.

The first result is about the classifications of several classes of subcategories, which extends [6] and [7]
respectively.

Theorem 1. Let C be an extriangulated category. Then we have the following two bijections.

(1) A bijection between the set of Serre subcategories of C and the set of faces of M(C).
(2) A bijection between the set of dense 2-out-of-3 subcategories and the set of cofinal subtractive

submonoids of M(C).

The second result is about the localization of an extriangulated category. For a nice subcategory N of
an extriangulated category C, Nakaoka–Ogawa–Sakai [4] constructed the exact localization C/N , which
generalizes the Verdier quotient of a triangulated category and the Serre quotient of an abelian category.
We show that under some conditions, this commutes with the Grothendieck monoid :

Theorem 2. Let C be an extriangulated category and N a subcategory of C satisfying some conditions.
Then we have an isomorphism of monoids

M(C/N ) ∼= M(C)/MN ,

where the right hand side is the monoid quotient by MN := {[N ] | N ∈ N}. This can be applied to the
Verdier quotient of a triangulated category, the stable category of a Frobenius category, and the Serre
quotient of an abelian category.

As a toy example, we consider an intermediate subcategory of the derived category D(A) of an abelian
category A, which is a subcategory C closed under extensions and direct summand satisfying A ⊆ C ⊆
A[1] ∗ A. We show that an intermediate subcategory is precisely a subcategory of the form F [1] ∗ A for
a torsionfree class F of A, and then compute its Grothendieck group, classify Serre subcategories, and
study the exact localization.
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