ICE-closed subcategories and wide τ -tilting modules

Haruhisa Enomoto (joint work with Arashi Sakai (Nagoya)) 23 November 2020, ICRA (online)

Graduate School of Mathematics, Nagoya University

Today's talk

- 1. Study ICE-closed subcats of mod A using torsion classes.
- 2. Establish a bijection between ICE-closed subcategories and wide τ -tilting modules.
- 3. Hereditary & Nakayama cases

ICEs via intervals in tors Λ

ICEs via wide τ -tilting

Hasse quiver of ICEs

ICEs via intervals in tors Λ

Torsion classes and wide subcategories

Throughout this talk,

- Λ : f.d. algebra over a field k.
- $mod \Lambda$: the cat. of f.g. right Λ -modules.

Definition

- A subcat. *T* of mod Λ is a torsion class (tors.)
 if it is closed under extensions and quotients.
- tors Λ : the poset of torsion classes in mod Λ .
- A subcat. W of mod A is wide if it is extension-closed exact abelian subcat, or equivalently, if closed under extensions, kernels and cokernels.

ICE-closed subcategories (ICEs)

Definition

A subcategory C of mod Λ is ICE-closed if closed under taking Images, Cokernels and Extensions, that is,

- + $\ensuremath{\mathcal{C}}$ is extension-closed.
- $f: C_1 \rightarrow C_2$ with $C_1, C_2 \in \mathcal{C}$ implies $\operatorname{Im} f$, coker $f \in \mathcal{C}$.

Example

Easy to see chat every tors and wide is ICE.

ICE-closed subcategories (ICEs)

Definition

A subcategory C of mod Λ is ICE-closed if closed under taking Images, Cokernels and Extensions, that is,

- + $\ensuremath{\mathcal{C}}$ is extension-closed.
- $f: C_1 \rightarrow C_2$ with $C_1, C_2 \in \mathcal{C}$ implies $\operatorname{Im} f$, coker $f \in \mathcal{C}$.

Example

Idea

ICE: a new class of ext-closed subcat of $mod \land which$ is

- large enough (containing all tors & wide),
- but not so large (controlled by tors & τ -tilting)!

Previously, I gave a classification of ICEs of $mod \land for$

- $\Lambda := kQ$ with Q Dynkin, and
- Λ: Nakayama.

Method

Use the heart of intervals in tors Λ !

Definition

+ For $\mathcal{U}\subseteq \mathcal{T}$ in tors A, an interval is a subposet of tors A

$$[\mathcal{U},\mathcal{T}] := \{\mathcal{T}' \in \mathsf{tors}\,\Lambda \,|\, \mathcal{U} \subseteq \mathcal{T}' \subseteq \mathcal{T}\}.$$

• For an interval $[\mathcal{U}, \mathcal{T}]$ in tors A, its heart is a subcat

$$\mathcal{H}_{[\mathcal{U},\mathcal{T}]} := \mathcal{T} \cap \mathcal{U}^{\perp} \subseteq \mathsf{mod}\,\Lambda$$

Remark

Heart construction is used in: [Jasso], [Demonet-Iyama-Reading-Reiten-Thomas], [Asai-Pfeifer], [Tattar], etc. Terminology "hearts of twin torsion pairs" due to Tattar.

 $\mathcal{H}_{[\mathcal{U},\mathcal{T}]} = \mathcal{T} \cap \mathcal{U}^{\perp}$ measures a difference " $\mathcal{T} - \mathcal{U}$."

Example

•
$$\mathcal{H}_{[0,\mathcal{T}]} = \mathcal{T}$$

- $\mathcal{H}_{[\mathcal{T},\mathsf{mod}\,\Lambda]} = \mathcal{T}^{\perp}$
- $\mathcal{H}_{[\mathcal{T},\mathcal{T}]} = 0$

•
$$\mathcal{T} = \mathcal{U} * \mathcal{H}_{[\mathcal{U},\mathcal{T}]}$$
,

 $\begin{aligned} ``\mathcal{T} - 0 &= \mathcal{T}"\\ ``mod \wedge - \mathcal{T} &= \mathcal{T}^{\perp}"\\ ``\mathcal{T} - \mathcal{T} &= 0."\\ ``\mathcal{T} &= \mathcal{U} + (\mathcal{T} - \mathcal{U})."\end{aligned}$

Examples of hearts

Proposition (E-Sakai)

Let C be an ICE-closed subcat of mod Λ . Then there is some interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ satisfying

$$\mathcal{C} = \mathcal{H}_{[\mathcal{U},\mathcal{T}]} \quad (= \mathcal{T} \cap \mathcal{U}^{\perp})$$

(C is a heart of $[{}^{\bot}C,{}^{\bot}C\vee\mathsf{T}(\mathcal{C})]$, but not used later)

Question

Which interval is an ICE interval, i.e. its heart is ICE?

Characterization of ICE

Theorem (E-Sakai)

The following are equivalent for an interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ :

- 1. $[\mathcal{U}, \mathcal{T}]$ is an ICE interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE).
- 2. There's some $\mathcal{T}' \in \operatorname{tors} \Lambda$ with $\mathcal{T} \subseteq \mathcal{T}'$ s.t. $[\mathcal{U}, \mathcal{T}']$ is wide interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}']}$ is wide).

In this case, $\mathcal{H}_{[\mathcal{U},\mathcal{T}]}$ is a torsion class in an abelian cat $\mathcal{H}_{[\mathcal{U},\mathcal{T}']}$.

Characterization of ICE

Theorem (E-Sakai)

The following are equivalent for an interval $[\mathcal{U}, \mathcal{T}]$ in tors Λ :

- 1. $[\mathcal{U}, \mathcal{T}]$ is an ICE interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE).
- 2. There's some $\mathcal{T}' \in \operatorname{tors} \Lambda$ with $\mathcal{T} \subseteq \mathcal{T}'$ s.t. $[\mathcal{U}, \mathcal{T}']$ is wide interval (i.e. $\mathcal{H}_{[\mathcal{U}, \mathcal{T}']}$ is wide).

In this case, $\mathcal{H}_{[\mathcal{U},\mathcal{T}]}$ is a torsion class in an abelian cat $\mathcal{H}_{[\mathcal{U},\mathcal{T}']}$.

Corollary (E-Sakai)

Let C be a subcategory of mod Λ . Then TFAE:

- 1. C is an ICE-closed subcategory of $mod \Lambda$.
- There's some wide subcat W of mod A s.t. C is a torsion class in an abelian category W.

Combinatorial way to obtain all ICEs

Corollary (E-Sakai)

Every ICE-closed subcategory is obtained as follows:

- Choose $\mathcal{U} \in \mathsf{tors}\,\Lambda$
- Define U⁺ as the join of U_i's for all Hasse arrows U ↔ U_i ending at U.
- For each $\mathcal{T} \in [\mathcal{U}, \mathcal{U}^+]$, the heart $\mathcal{H}_{[\mathcal{U}, \mathcal{T}]}$ is ICE.

tors Λ

ICE as Filt of brick labels

Remark

The heart of $[\mathcal{U}, \mathcal{T}]$ is Filt of brick labels in $[\mathcal{U}, \mathcal{T}]$.

 $\Lambda := k[1 \leftarrow 2 \leftarrow 3]/\operatorname{rad}^2$

Hasse(tors Λ) with brick labels

ICEs via wide τ -tilting

Adachi-Iyama-Reiten's bijection

Theorem (Adachi-Iyama-Reiten)

There is a bijection

f-tors $\Lambda \xrightarrow[Fac]{P(-)}{Fac} s\tau$ -tilt Λ

between functorially finite tors and support τ -tilting mods.

Recall

Every ICE ${\mathcal C}$ is a torsion class in some wide subcat ${\mathcal W}.$

We can use Adachi-Iyama-Reiten's bij if

- W is equiv. to mod Γ for some Γ (this is equiv. to that W is fun. fin.)
- \mathcal{C} is a fun. fin. torsion class in \mathcal{W} .

Definition

An ICE-closed subcat C is doubly functorially finite if there's some wide subcat W of mod Λ s.t.

- + $\ensuremath{\mathcal{W}}$ is functorially finite.
- + ${\mathcal C}$ is a funct. fin. torsion class in ${\mathcal W}.$

df-ice Λ : the set of doubly fun. fin. ICEs of mod Λ .

Clearly f-tors $\Lambda \subseteq df$ -ice Λ ($\mathcal{W} := mod \Lambda$).

Remark

A is τ -tilting finite if and only if ice $\Lambda = df$ -ice Λ .

Wide τ -tilting modules and a bijection

Definition

A Λ -module M is wide τ -tilting if there's some fun. fin. wide subcat W of mod Λ s.t. M is τ_W -tilting. $\bigvee \ \simeq \$ mod $\bigcap \$ $w\tau$ -tilt Λ : the set of wide τ -tilting mods. $\overset{\vee}{\bowtie} \ \longmapsto \ \overset{\vee}{\Box}$

Support τ -tilting = wide τ -tilting with $\mathcal W$ being Serre.

Theorem (E-Sakai)

We have a bijection

where cok *M* is the cat of cokernels of maps in add *M*.

Example of bijection

Example of bijection

w
$$\tau$$
-tilt $\Lambda \xrightarrow[P(-)]{\operatorname{cok}} \operatorname{df-ice} \Lambda$

Remark

Wide τ -tilting modules is **not** τ -rigid in general!

We can obtain all wide τ -tilting modules if

- Λ is τ -tilting finite, and
- The Hasse quiver of $s\tau$ -tilt Λ is given.

Examples of computation of wide τ -tilting

Hasse quiver of ICEs

|M|: the number of indecomposable direct summands of *M* up to isom.

Proposition (Adachi-Iyama-Reiten)

The poset $s\tau$ -tilt Λ is Hasse $|\Lambda|$ -regular, that is, for each vertex $M \in \text{Hasse}(s\tau$ -tilt $\Lambda)$,

 $\#\{arrows \ starting \ at \ M\} + \#\{arrows \ ending \ at \ M\} = |\Lambda|$

Question

Is there any analogous combinatorial property for wide τ -tilting (or ICE-closed subcats)?

Example of Hasse(w τ -tilt Λ)

 $w\tau \text{-tilt } \Lambda \text{ has the poset str. induced by} \\ \operatorname{cok}(-): w\tau \text{-tilt } \Lambda \cong \operatorname{df-ice} \Lambda. \qquad \mathsf{M} \leq \mathsf{N} \iff \operatorname{cok} \mathsf{M} \subseteq \operatorname{cok} \mathsf{N}$

The following are $Hasse(w\tau-tilt \Lambda)$.

red: wide τ -tilting, not support τ -tilting.

Hereditary case

Proposition (E-Sakai)

If Λ is hereditary, then

- wide τ -tilting modules = rigid modules.
- doubly fun. fin. = fun.fin. ICEs.

Theorem (E-Sakai)

Let Λ be hereditary. Then for each $M \in w\tau$ -tilt Λ , there are exactly |M| arrows starting at M in $Hasse(w\tau$ -tilt Λ).

For each indec. summand X of M, there is an Hasse arrow

 $M
ightarrow \mu_X(M)$

with $\mu_X(M)$: generalization of left mutation of $s\tau$ -tilt Λ .

Exe (M, M) =0

Theorem (E, in preparation)

Let Λ be Nakayama. Then for each $M \in w\tau$ -tilt Λ , there are exactly |M| arrows starting at M in Hasse($w\tau$ -tilt Λ).

Proof uses simple objects in ICEs:

ICEs bijectively correspond to epibricks.

Ч U Z