Relations for Grothendieck groups and Representation-finiteness

Haruhisa Enomoto

Graduate School of Mathematics, Nagoya University

20 September

Haruhisa Enomoto Relations for Grothendieck groups

イロン 不良 とくほう 不良 とうほ

Outline

Introduction

Known Results

Main results

- Settings and the motivating question
- Main Results
- Functorial proof
 - Effaceable functors
 - Sketch of Proof

ヘロア 人間 アメヨア 人口 ア

Known Results

Outline

Introduction Known Results

- Main results
- Settings and the motivating question
- Main Results
- Functorial proof
 - Effaceable functors
 - Sketch of Proof

ヘロア 人間 アメヨア 人口 ア

Known Results

Representation-finiteness

 Λ : artin algebra. mod Λ : the cat. of f.g. right Λ -module.

Definition

 Λ is representation-finite : $\Leftrightarrow \mod \Lambda$ has finitely many indecomposable objects (up to isom).

Classical Question

Characterize Representation-Finiteness!

ヘロン ヘアン ヘビン ヘビン

Known Results

Results of Butler and Auslander

Theorem (Butler 1981, Auslander 1984)

The following are equivalent:

- (1) Λ is representation-finite.
- (2) The relations for the Grothendieck group $K_0 (mod \Lambda)$ are generated by Auslander-Reiten sequences.

Today, I will

Generalize this results, from $\operatorname{mod}\Lambda$ to

- Subcategory of mod Λ, or
- Higher Krull-dimensional version.

by using Functorial Arguments on Exact Categories.

Settings and the motivating question Main Results

Outline

Introduction

Known Results

Main results

- Settings and the motivating question
- Main Results
- Functorial proof
 - Effaceable functors
 - Sketch of Proof

ヘロア 人間 アメヨア 人口 ア

Settings and the motivating question Main Results

Exact category

 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0 \text{ is a kernel-cokernel pair in } \mathcal{E}$: $\Leftrightarrow f = \ker g \text{ and } g = \operatorname{coker} f.$

Definition (Quillen 1973)

An exact category \mathcal{E} consists of:

- an additive category \mathcal{E} , together with
- a class of ker-coker pairs in \mathcal{E} (called conflations)

satisfying some conditions.

イロン 不良 とくほう 不良 とうほ

Settings and the motivating question Main Results

Exact category

 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0 \text{ is a kernel-cokernel pair in } \mathcal{E}$: $\Leftrightarrow f = \ker g \text{ and } g = \operatorname{coker} f.$

Definition (Quillen 1973)

An exact category \mathcal{E} consists of:

- an additive category \mathcal{E} , together with
- a class of ker-coker pairs in \mathcal{E} (called conflations)

satisfying some conditions.

Example

Extension-closed subcategory of abelian categories (e.g. torsion class, CM rep-theory, \cdots)

Settings and the motivating question Main Results

The Grothendieck group of exact cat.

E: Krull-Schmidt exact category.

Definition

- ind \mathcal{E} : the set of indecomposable obj. (up to iso) in \mathcal{E} .
- $\mathsf{K}_0(\mathcal{E}, 0)$: the free abelian group with basis set ind \mathcal{E} . \cup
- $\mathsf{Ex}(\mathcal{E})$: the subgroup gen. by [X] [Y] + [Z]for all conflations $0 \to X \to Y \to Z \to 0$ in \mathcal{E} . (we identify $[X \oplus Y] = [X] + [Y]$ in $\mathsf{K}_0(\mathcal{E}, 0)$)
- $K_0(\mathcal{E}) := K_0(\mathcal{E}, 0) / E_x(\mathcal{E})$: the Grothendieck group.

イロン 不良 とくほう 不良 とうほ

Settings and the motivating question Main Results

Auslander-Reiten conflations

 \mathcal{E} : Krull-Schmidt exact category.

Definition

A conflation $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is an AR conflation if:

- g is right almost split.
- f is left almost split.

Settings and the motivating question Main Results

Auslander-Reiten conflations

 $\mathcal{E}{:} \text{ Krull-Schmidt exact category.}$

Definition

A conflation $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is an AR conflation if:

- g is right almost split.
- f is left almost split.

Then we can define the following subgroups:

- $\mathsf{K}_0(\mathcal{E}, 0)$: the split Grothendieck group. \cup
- Ex(\mathcal{E}): gen. by [X] [Y] + [Z] for all conflations $\cup \quad 0 \to X \to Y \to Z \to 0.$
- $AR(\mathcal{E})$: for all AR conflations.

Settings and the motivating question Main Results

Motivating Question

 \mathcal{E} : Krull-Schmidt exact category.

Question

When are the following equivalent?

- (1) \mathcal{E} is finite (: \Leftrightarrow ind \mathcal{E} is a finite set).
- (2) $Ex(\mathcal{E}) = AR(\mathcal{E})$ holds.

For this question,

(1) \Rightarrow (2): (almost) always holds by my previous work. (2) \Rightarrow (1): \exists Some counter-examples.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Settings and the motivating question Main Results

Results for artin algebras

 Λ : artin algebra.

Definition

A subcategory ${\mathcal E}$ of $\operatorname{mod}\Lambda$ is resolving if

- it is closed under extension, summands.
- contains all projectives.
- For each exact sequence 0 → X → Y → Z → 0, if Y and Z belong to E, then so does X.

イロン 不良 とくほう 不良 とうほ

Settings and the motivating question Main Results

Theorem (E)

Let Λ be an artin algebra and \mathcal{E} a contravariantly finite resolving subcategory of mod Λ . Then TFAE.

(1) \mathcal{E} is finite.

(2) $Ex(\mathcal{E}) = AR(\mathcal{E}).$

Example

- Functorially finite torsion(free) class.
- $\mathcal{F}(\Delta)$ over standardly-stratified algebra (e.g. quasi-hereditary algebra).
- ${}^{\perp}U := \{X \in \text{mod } \Lambda | \operatorname{Ext}_{\Lambda}^{>0}(X, U) = 0\}$ for a cotilting module U.
- CM Λ for Iwanaga-Gorenstein algebra $\Lambda.$

Settings and the motivating question Main Results

Results for orders

R: commutative regular complete local ring.

Definition

- An *R*-algebra Λ is *R*-order
 :⇔ Λ is free of finite rank as an *R*-module.
- CM Λ := {X ∈ mod Λ |X is free over R}
 → Krull-Schmidt exact cat. with enough proj = proj Λ.
- Λ is Gorenstein if CM Λ is Frobenius exact category.
- Λ "has" an isolated singularity if CM Λ has AR conflations.

Example

• dim $R = 0 \rightsquigarrow R$ -order = f.d. alg, CM $\Lambda = \text{mod } \Lambda$.

Settings and the motivating question Main Results

Result for orders

Theorem (E)

Let Λ be an R-order with isolated singularity. If either

- Λ has finite global dimension, or
- Λ is Gorenstein,

then TFAE:

(1) CM Λ is finite.

(2) $E_x(CM \Lambda) = AR(CM \Lambda)$ holds.

Conjecture

(1) and (2) are equivalent for an arbitrary order $\Lambda !$ (open even for commutative case)

Effaceable functors Sketch of Proof

Outline

Main results

- Settings and the motivating question
- Main Results
- Functorial proof
 - Effaceable functors
 - Sketch of Proof

・ロット (雪) () () () ()

Effaceable functors Sketch of Proof

Idea of Proof

\mathcal{E} : Krull-Schmidt exact cateogory.

Question

When are the following equivalent?

(1) \mathcal{E} is finite.

(2) $E_x(\mathcal{E}) = AR(\mathcal{E})$ holds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Effaceable functors Sketch of Proof

Idea of Proof

\mathcal{E} : Krull-Schmidt exact category.

Question

When are the following equivalent?

(1) \mathcal{E} is finite.

(1.5) Every object in eff \mathcal{E} has finite length.

(2)
$$Ex(\mathcal{E}) = AR(\mathcal{E})$$
 holds.

Idea

(1.5) Categorifies (2),

ヘロン ヘアン ヘビン ヘビン

Effaceable functors Sketch of Proof

Idea of Proof

\mathcal{E} : Krull-Schmidt exact category.

Question

When are the following equivalent?

(1) \mathcal{E} is finite.

(1.5) Every object in eff \mathcal{E} has finite length.

(2)
$$Ex(\mathcal{E}) = AR(\mathcal{E})$$
 holds.

Idea

(1.5) Categorifies (2), and is closer to (1)!!

ヘロン ヘアン ヘビン ヘビン

Effaceable functors Sketch of Proof

Effaceable functors

- $\mathcal{E} \text{: Krull-Schmidt exact category.}$
 - \mathcal{E} -module is a contravariant additive functor $M : \mathcal{E}^{op} \to \mathcal{A}b$. $\rightsquigarrow Mod \mathcal{E}$: abelian cat.
 - The Yoneda emb. X → E(-, X) induces equivalence between E and the cat of f.g. proj. E-modules.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Effaceable functors Sketch of Proof

Effaceable functors

\mathcal{E} : Krull-Schmidt exact category.

- \mathcal{E} -module is a contravariant additive functor $M : \mathcal{E}^{op} \to \mathcal{A}b$. $\rightsquigarrow Mod \mathcal{E}$: abelian cat.
- The Yoneda emb. X → E(-, X) induces equivalence between E and the cat of f.g. proj. E-modules.

Definition

 \mathcal{E} -module M is effaceable : $\Leftrightarrow \exists$ a conflation $0 \to X \to Y \to Z \to 0$ in \mathcal{E} with

$$0 \to \mathcal{E}(-, X) \to \mathcal{E}(-, Y) \to \mathcal{E}(-, Z) \to M \to 0$$

eff \mathcal{E} : the cat. of effaceable modules.

Effaceable functors Sketch of Proof

Properties of eff \mathcal{E}

E: Krull-Schmidt exact category.

Facts eff *E* is abelian subcategory of Mod *E*. eff *E* reconstructs the exact structure of *E*. eff *E* = mod *E* if *E* has enough projectives.

$$\underbrace{(0 \to X \to Y \to Z \to 0)}_{\text{Conflation in } \mathcal{E}} \underbrace{(0 \to (-, X) \to (-, Y) \to (-, Z) \to M \to 0)}_{\text{Conflation in } \mathcal{E}}$$

イロン 不良 とくほう 不良 とうほ

Effaceable functors Sketch of Proof

Properties of eff \mathcal{E}

 \mathcal{E} : Krull-Schmidt exact category.

Facts eff *E* is abelian subcategory of Mod *E*. eff *E* reconstructs the exact structure of *E*. eff *E* = mod *E* if *E* has enough projectives.

Effaceable functors Sketch of Proof

General result

R: artinian.

 \mathcal{E} : Krull-Schmidt Hom-finite exact R-cat. with a progen.

Conditions

(1) \mathcal{E} is finite.

- (1.5) Every object in eff \mathcal{E} (= mod $\underline{\mathcal{E}}$) has finite length.
 - (2) $Ex(\mathcal{E}) = AR(\mathcal{E})$ holds.

Then the following holds:

ヘロン ヘアン ヘビン ヘビン

э

Effaceable functors Sketch of Proof

Remark

Conditions

(1) \mathcal{E} is finite.

(1.5) Every object in eff \mathcal{E} (= mod $\underline{\mathcal{E}}$) has finite length.

(2)
$$E_x(\mathcal{E}) = AR(\mathcal{E})$$
 holds.

 (*) is OK for contravariantly finite resolving subcat (including CM Λ for order Λ).

・ロト ・ 理 ト ・ ヨ ト ・

-

Effaceable functors Sketch of Proof

Remark

Conditions

(1) \mathcal{E} is finite.

(1.5) Every object in eff \mathcal{E} (= mod $\underline{\mathcal{E}}$) has finite length.

(2)
$$E_x(\mathcal{E}) = AR(\mathcal{E})$$
 holds.

- (*) is OK for contravariantly finite resolving subcat (including CM Λ for order Λ).
- We need extra cond. (CF) when we drop artin-ness.

ヘロア 人間 アメヨア 人口 ア

Effaceable functors Sketch of Proof

Thank you for your attention!

Haruhisa Enomoto Relations for Grothendieck groups

イロン 不得 とくほ とくほ とうほ