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Representation-finiteness

Λ: artin algebra.
mod Λ: the cat. of f.g. right Λ-module.

Definition
Λ is representation-finite :⇔ mod Λ has finitely many
indecomposable objects (up to isom).

Classical Question
Characterize Representation-Finiteness!
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Results of Butler and Auslander

Theorem (Butler 1981, Auslander 1984)
The following are equivalent:
(1) Λ is representation-finite.
(2) The relations for the Grothendieck group K0(mod Λ)

are generated by Auslander-Reiten sequences.

Today, I will
Generalize this results, from mod Λ to

Subcategory of mod Λ, or
Higher Krull-dimensional version.

by using Functorial Arguments on Exact Categories.
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Exact category
0→ X

f−→ Y
g−→ Z → 0 is a kernel-cokernel pair in E

:⇔ f = ker g and g = coker f .

Definition (Quillen 1973)
An exact category E consists of:

an additive category E , together with
a class of ker-coker pairs in E (called conflations)

satisfying some conditions.

Example
Extension-closed subcategory of abelian categories
(e.g. torsion class, CM rep-theory,· · · )

Haruhisa Enomoto Relations for Grothendieck groups



Introduction
Main results

Functorial proof

Settings and the motivating question
Main Results

Exact category
0→ X

f−→ Y
g−→ Z → 0 is a kernel-cokernel pair in E

:⇔ f = ker g and g = coker f .

Definition (Quillen 1973)
An exact category E consists of:

an additive category E , together with
a class of ker-coker pairs in E (called conflations)

satisfying some conditions.

Example
Extension-closed subcategory of abelian categories
(e.g. torsion class, CM rep-theory,· · · )

Haruhisa Enomoto Relations for Grothendieck groups



Introduction
Main results

Functorial proof

Settings and the motivating question
Main Results

The Grothendieck group of exact cat.

E : Krull-Schmidt exact category.

Definition
ind E : the set of indecomposable obj. (up to iso) in E .
K0(E , 0): the free abelian group with basis set ind E .
∪

Ex(E): the subgroup gen. by [X]− [Y ] + [Z]
for all conflations 0→ X → Y → Z → 0 in E .
(we identify [X ⊕ Y ] = [X] + [Y ] in K0(E , 0))
K0(E) := K0(E , 0)/Ex(E): the Grothendieck group.
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Auslander-Reiten conflations
E : Krull-Schmidt exact category.

Definition

A conflation 0→ X
f−→ Y

g−→ Z → 0 is an AR conflation if:
g is right almost split.
f is left almost split.

Then we can define the following subgroups:
K0(E , 0): the split Grothendieck group.
∪

Ex(E): gen. by [X]− [Y ] + [Z] for all conflations
∪ 0→ X → Y → Z → 0.

AR(E): — for all AR conflations.

Haruhisa Enomoto Relations for Grothendieck groups



Introduction
Main results

Functorial proof

Settings and the motivating question
Main Results

Auslander-Reiten conflations
E : Krull-Schmidt exact category.

Definition

A conflation 0→ X
f−→ Y

g−→ Z → 0 is an AR conflation if:
g is right almost split.
f is left almost split.

Then we can define the following subgroups:
K0(E , 0): the split Grothendieck group.
∪

Ex(E): gen. by [X]− [Y ] + [Z] for all conflations
∪ 0→ X → Y → Z → 0.

AR(E): — for all AR conflations.

Haruhisa Enomoto Relations for Grothendieck groups



Introduction
Main results

Functorial proof

Settings and the motivating question
Main Results

Motivating Question

E : Krull-Schmidt exact category.

Question
When are the following equivalent?
(1) E is finite (:⇔ ind E is a finite set).
(2) Ex(E) = AR(E) holds.

For this question,
(1)⇒ (2): (almost) always holds by my previous work.
(2)⇒ (1): ∃ Some counter-examples.
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Results for artin algebras

Λ: artin algebra.

Definition
A subcategory E of mod Λ is resolving if

it is closed under extension, summands.
contains all projectives.
For each exact sequence 0→ X → Y → Z → 0,
if Y and Z belong to E , then so does X.
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Theorem (E)
Let Λ be an artin algebra and E a contravariantly finite
resolving subcategory of mod Λ. Then TFAE.
(1) E is finite.
(2) Ex(E) = AR(E).

Example
Functorially finite torsion(free) class.
F(∆) over standardly-stratified algebra (e.g.
quasi-hereditary algebra).
⊥U := {X ∈ mod Λ|Ext>0

Λ (X,U) = 0} for a cotilting
module U .
CM Λ for Iwanaga-Gorenstein algebra Λ.
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Results for orders
R: commutative regular complete local ring.

Definition
An R-algebra Λ is R-order
:⇔ Λ is free of finite rank as an R-module.
CM Λ := {X ∈ mod Λ|X is free over R}
 Krull-Schmidt exact cat. with enough proj = proj Λ.
Λ is Gorenstein if CM Λ is Frobenius exact category.
Λ "has" an isolated singularity if CM Λ has AR
conflations.

Example
dimR = 0 R-order = f.d. alg, CM Λ = mod Λ.
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Result for orders

Theorem (E)
Let Λ be an R-order with isolated singularity. If either

Λ has finite global dimension, or
Λ is Gorenstein,

then TFAE:
(1) CM Λ is finite.
(2) Ex(CM Λ) = AR(CM Λ) holds.

Conjecture
(1) and (2) are equivalent for an arbitrary order Λ!
(open even for commutative case)
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Idea of Proof

E : Krull-Schmidt exact cateogory.

Question
When are the following equivalent?
(1) E is finite.
(2) Ex(E) = AR(E) holds.
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Idea of Proof

E : Krull-Schmidt exact category.

Question
When are the following equivalent?
(1) E is finite.

(1.5) Every object in eff E has finite length.
(2) Ex(E) = AR(E) holds.

Idea
(1.5) Categorifies (2),

and is closer to (1)!!
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Effaceable functors

E : Krull-Schmidt exact category.
E-module is a contravariant additive functor
M : Eop → Ab.  Mod E : abelian cat.
The Yoneda emb. X 7→ E(−, X) induces equivalence
between E and the cat of f.g. proj. E-modules.

Definition
E-module M is effaceable
:⇔ ∃ a conflation 0→ X → Y → Z → 0 in E with

0→ E(−, X)→ E(−, Y )→ E(−, Z)→M → 0

eff E : the cat. of effaceable modules.
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Properties of eff E

E : Krull-Schmidt exact category.

Facts
eff E is abelian subcategory of Mod E .
eff E reconstructs the exact structure of E .
eff E = mod E if E has enough projectives.

Conflation in E Obj in eff E
0→ X → Y → Z → 0 0→ (−, X)→ (−, Y )→ (−, Z)→M → 0
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Properties of eff E
E : Krull-Schmidt exact category.

Facts
eff E is abelian subcategory of Mod E .
eff E reconstructs the exact structure of E .
eff E = mod E if E has enough projectives.

Conflation in E Obj in eff E
0→ X → Y → Z → 0 0→ (−, X)→ (−, Y )→ (−, Z)→M → 0

AR conflation simple obj in eff E
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General result

R: artinian.
E : Krull-Schmidt Hom-finite exact R-cat. with a progen.

Conditions
(1) E is finite.

(1.5) Every object in eff E ( = mod E) has finite length.
(2) Ex(E) = AR(E) holds.

Then the following holds:

(1) (1.5) (2)
E has a weak cogen.
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Remark

Conditions
(1) E is finite.

(1.5) Every object in eff E ( = mod E) has finite length.
(2) Ex(E) = AR(E) holds.

(1) (1.5) (2)
(*): E has a weak cogen.

(*) is OK for contravariantly finite resolving subcat
(including CM Λ for order Λ).

We need extra cond. (CF) when we drop artin-ness.
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Thank you for your
attention!
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