MAXIMAL SELF-ORTHOGONAL MODULES AND A NEW GENERALIZATION OF TILTING MODULES

HARUHISA ENOMOTO

This talk is based on the paper [En]. Let Λ be a finite-dimensional k-algebra over a field k, and let $\operatorname{mod} \Lambda$ denote the category of finitely generated Λ -modules. We say that $T \in \operatorname{mod} \Lambda$ is *self-orthogonal* if $\operatorname{Ext}^{i}_{\Lambda}(T,T) = 0$ for all i > 0. In this talk, I will present my results on self-orthogonal modules.

We consider a generalization of the progenerator Λ . This Λ is self-orthogonal and generates $\operatorname{\mathsf{mod}}\Lambda$ in the sense that every object in $\operatorname{\mathsf{mod}}\Lambda$ admits a surjection from Λ^m for some m. There is a notion of *tilting modules* that generalizes Λ , and it satisfies a similar property: if T is tilting, then consider the subcategory $T^{\perp} := \{X \in \operatorname{\mathsf{mod}}\Lambda \mid \operatorname{Ext}_{\Lambda}^{>0}(T, X) = 0\}$ of $\operatorname{\mathsf{mod}}\Lambda$. Then, T generates T^{\perp} by [AR].

Building on this property, we define a projectively Wakamatsu tilting module to be a selforthogonal module T that generates T^{\perp} . This is a subclass of Wakamatsu tilting modules introduced by Wakamatsu [Wa].

Our main result is as follows: suppose Λ is *representation-finite*, meaning that there are only finitely many non-isomorphic indecomposable Λ -modules. Let |T| denote the number of non-isomorphic indecomposable summands of a module $T \in \text{mod } \Lambda$. Then, any self-orthogonal module can be completed into a projectively Wakamatsu tilting module, and the following statements are equivalent for $T \in \text{mod } \Lambda$:

- (1) T is projectively Wakamatsu tilting.
- (2) T is Wakamatsu tilting.
- (3) T is self-orthogonal with $|T| = |\Lambda|$.
- (4) T is maximal self-orthogonal, meaning that T is self-orthogonal and if $T \oplus M$ is self-orthogonal, then M is a direct summand of T^m for some m.

If time permits, I will also discuss several open conjectures related to self-orthogonal modules.

References

- [AR] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152.
- [En] H. Enomoto, Maximal self-orthogonal modules and a new generalization of tilting modules, arXiv:2301.13498.
- [Wa] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298–325.

GRADUATE SCHOOL OF SCIENCE, OSAKA METROPOLITAN UNIVERSITY Email address: henomoto@omu.ac.jp